If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-22y+10=0
a = 1; b = -22; c = +10;
Δ = b2-4ac
Δ = -222-4·1·10
Δ = 444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{444}=\sqrt{4*111}=\sqrt{4}*\sqrt{111}=2\sqrt{111}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{111}}{2*1}=\frac{22-2\sqrt{111}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{111}}{2*1}=\frac{22+2\sqrt{111}}{2} $
| 2x+2=3×-2 | | X(x+7)=15 | | X^2+10x÷5=840 | | 4.6•y=44.16 | | Y+50=2y-20 | | 7x/2=5x-9/6 | | 24-n=25 | | 79=2a | | X(x+4)=23 | | x^2+197x-5000=0 | | 64÷2x=8 | | 216=(x+6)*x | | x^2+12=216 | | 75+2x=5.75x | | 50+2x=4.00 | | 10=((t*t)-t)/2 | | 3x^2+6x=1/3 | | 10=t^2-t/2 | | -3(4x-2)=-6(2x-4) | | (17x+4)+(19x-2)=180 | | 10-t^2+t*2=0 | | 0=32t^2+40t-48 | | 32t^2+40t-48=0 | | R(n)=0.25n0.75+0.25n. | | 20.7+n=9 | | X+30=x-10=x+10=2x | | -4x+2=-3x-4 | | 2a+9=9+5 | | u^2+6u+3=0 | | 3*4^(3x-6)+2=35 | | 3(4)^(3x-6)+2=35 | | 2x-2+2x+8=90 |